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Testing in relevant environments is key to exploration mission hardware development. 

This is true on both the component level (in early development) and system level (in late 

development stages).  During ISRU missions the hardware will interface with the soil 

(digging, roving, etc) in a vacuum environment. A relevant test environment will therefore 

involve a vacuum chamber with a controlled, conditioned simulant bed.  However, in earth-

based granular media, such as lunar soil simulant, gases trapped within the material pore 

structures and water adsorbed to all particle surfaces will release when exposed to vacuum.  

Early vacuum testing has shown that this gas release can occur violently, which loosens and 

weakens the simulant, altering the consolidation state.  

The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the 

NASA Glenn Research Center has been modified to create a soil mechanics test facility.  A 

0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum 

using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been 

used. An electric cone penetrometer was used to measure simulant strength properties at 

vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant 

disruptions, caused by off gassing, affected the strength properties, but could be mitigated 

by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless 

of the pump rate.  However, slow off gassing of the soil lead to long test times, a full week, to 

reach 10
-5

Torr. This work highlights the need for robotic machine-simulant hardware and 

operations in vacuum to expeditiously perform (sub-)systems tests. 

Nomenclature 

CP = Cone Penetrometer 

VF = Vacuum Facility 

RGA = Residual Gas Analyzer 

 

I. Introduction 

HE exploration of extraterrestrial environments requires rugged hardware that can survive a variety of harsh 

conditions.  Extraterrestrial environments have damaged or ended the life of all moving machines within 

two years. The longest living machines have been simple compared to hard working surface systems of the future. 

For In-Situ Resource Utilization (ISRU) applications, this hardware involves a variety of relatively complex 

systems, such as excavators, drills, granular reactors, hoppers, augers, crushers, sifters, mixers, etc. Ground based 

testing in relevant environments is therefore key to exploration mission hardware development. This is true on both 

the component level (in early development) and system level (in late development stages). 

 Relevant environment testing has been limited thus far.  Physical regolith simulants are in widespread use to 

explore various abrasion (wear), traction (force), adhesion, flow, etc., effects.  Pressure and temperature also play a 

critical role in hardware performance. This includes changes to the simulant geotechnical properties in addition to 
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electrical and mechanical hardware effects. A relevant test environment will therefore involve a vacuum chamber 

with a conditioned simulant bed (a known/controlled consolidation state).  However, in earth-based granular media, 

such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed on all particle 

surfaces are released when exposed to vacuum.  Early vacuum testing has shown that this gas release can occur 

violently, which loosens and weakens the simulant, altering the consolidation state.  A relevant pressure test facility 

must be equipped to mitigate this occurrence and/or find a way to remotely condition the simulant after the vacuum 

environment has been achieved.  

 The Vacuum Facility (VF) #13, a mid-size chamber (3.66m (tall, 1.5m (5ft) inner diameter) at the NASA Glenn 

Research Center, has been modified to create such a soil mechanics test facility. Using a 1 ton bin of simulant, tests 

were performed to explore the simulant-pressure interaction.  This includes identifying the conditions that create the 

simulant disturbances and exploring options for mitigation. The goal was to reach a 10
-4

 to 10
-7

 Torr  vacuum, 

similar to that used in past published terrestrial simulant work
1
. The actual lunar surface pressure ranges from 10

-7
 to 

10
-12

 Torr, depending on ascent and landing exhaust gases in the moon's atmosphere
2
. However, large 10

-12
 Torr 

vacuum facilities are not affordable at this time. Once at vacuum, the simulant strength was characterized as a 

function of depth and location using a cone penetrometer (CP), which is the most common and trusted terrestrial tool 

for its simplicity and repeatability. A residual gas analyzer (RGA) was employed to determine the composition of 

the released gases. Various facility and procedural improvements were explored to improve the evacuation process. 

A total of three tests were performed during phase 1 of the test program; two with GRC-3 lunar geotechnical 

simulant and one with lunar highlands analog LHT-3M simulant.  Phase 2 of the program will incorporate a means 

of robotic simulant tilling and compaction that can be used after vacuum is achieved.  Phase 2 commenced in 

November 2011. 

 The overall goals of this effort are to demonstrate the capability of achieving a credible lunar simulant vacuum 

test environment large enough for subsystem testing and to establish the robotic operations that create a well 

characterized controlled soil bed. With this system one can condition a regolith bed, measure the in-situ soil 

strength, perform a geotechnical test (e.g. traction, excavation) on hardware, and compare model predictions with 

the measured performance, all in an extra-terrestrially realistic environment. 

 

II. Hardware 

The vacuum facility (VF-13) is a vertical, cylindrical chamber with and internal volume of 6.35 m
3 
(Fig1A).  The 

bulk of the volume is within the removable 2.52 m tall by 1.5 m diameter lid. The fixed base is 1.08 m deep and 

accommodates all the electrical, mechanical, and gas feed-throughs. Three different types of pumps were used to 

achieve the target pressure. A venturi pump was used during the initial pump down and has an operating range of 

760 to around 100 Torr.  Since this pump has no moving parts, it is not sensitive to dust or water. The primary 

roughing pump on the facility is a rotary vacuum pump which has a range of 

760 to 0.1 Torr.  A portable rotary vane roughing pump was also added to 

increase pump rate in this range. These pumps are sensitive to contamination 

from the simulant, therefore some additional precautions were taken. On the 

primary pump line, a 1.8 m tall upside down u-tube trap was added to 

encourage particle elutriation. A non-immersion vacuum oil trap was also 

located at its downstream end to catch any particles inertially before they could 

travel horizontally to the pump.  This was a followed by a fabric particle filter 

and cold trap at the pump inlet. While a cold trap is traditionally used to prevent 

backflow of oil from the pump, here it acted as a water trap. Once the chamber 

pressure reached 0.1 Torr, the cryogenic pump could be used.  This pump is 

capable of achieving pressures on the order of 10
-7 

Torr in VF-13. 

The test specific hardware is shown in Fig.1B (with the VF13 lid removed).  

The simulant bin is a ~1 m
2
 by 0.7 m deep box that contains roughly 1 metric 

ton of lunar regolith simulant.  The soil depth was approximately 0.6 m, which 

would be adequate for hardware tests regarding traction and surface excavation. 

The first set of tests used GRC-3 lunar geotechnical simulant (a sand and silt 

mix), while the latter tests used NU-LHT-3M (a lower cost formulation of 

LHT-2M, without the trace minerals and agglutinates). The tall vertical 

structure in Fig.1B is the CP system, which was driven by a standard hand drill 

via a flexible shaft feed-though coupled to the jackscrew drive. The jackscrew 

 
Figure 1: Photo of the vacuum 

facility (A) with the lid and (B) 

without the lid, showing the 

research hardware. The tall 

structure is the cone 

penetrometer. 
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pushed the CP at a constant 1 cm/sec into the simulant. The pressure felt by the tip during penetration was recorded 

at 2-5mm depth intervals. All lubricated surfaces of the drive system were cleaned of stock lubricants and re-

lubricated with a specialty vacuum compatible lubricant. Three cameras were mounted within the chamber to 

monitor simulant disturbances during the pump down.  The cameras were modified with additional heat sinks to 

ensure operation at low pressure.  Two were located at opposite corners of the simulant bin, only a few inches off 

the simulant surface for a grazing view.  The third was mounted on the CP frame to give a top view of the bin 

surface.   Pressure data was logged at 1Hz over the entire test duration using a multi-mode pressure gauge.  An RGA 

was mounted on the lid of the chamber (blue box visible in Fig.1A), with the sensor recessed behind a valve to 

prevent exposure to dust. The RGA could not be activated until the pressure reached 5x10
-4 

Torr.  

III. Results 

A. Pressure 

Figure 2 shows the pressure traces during the pump down process for all three tests.  The pumps had to be shut 

down or operated in restricted capacity during the overnight periods, which accounts for most of the pressure rises. 

When the tank was allowed to sit idle with all pumps deactivated, the simulant off gassed to an equilibrium level. 

Once at equilibrium, the pressure stabilized; there was no evidence of chamber leakage. This can be seen in the 

overnight periods, particularly in tests 2, which appear as saw tooth shapes in Fig. 2.  This off gassing of the 

simulant resulted in long operational times; these tests were run for a full week or more. The progress was 

particularly slow in the <1 Torr range, when the roughing pumps approached the limits of their capacity.  In tests 1 

and 2, the roughing pumps were unable to achieve the cryogenic pump operating pressure (0.1Torr) within a 

reasonable time frame. Whereas in Test 3, the cryogenic pump operation was possible on Days 9 and 11, which 

accounts for the sharp pressure reductions. Table 1 summarizes the operating conditions of the three tests. 

The improved performance of test 3 can be attributed to both the soil simulant type and the test procedure.  The 

GRC-3 simulant in tests 1 and 2 has a significant silt 

component, and likely contained more adsorbed water than 

the LHT-3M used in test 3. Thus the GRC-3 would take 

longer to dry. The large amount of water retrieved from the 

cold traps at the end of each day supports this.   In addition to 

the reduced volatile gases, a permissive was added to the 

control system in test 3 to permit overnight operation of the 

primary roughing pump.  The secondary, portable pump had 

to be shutdown overnight, so there was an initial pressure 

rise.  However, the continuous removal of gases overnight, 

albeit at a lower rate, expedited the test as a whole. This 

effect is clear during the overnight between days 3 and 4 

when the pump shut down when a safety permissive was 

triggered. It took nearly 2days to recover from the resulting 

pressure rise.  

The activation of the cryogenic 

pump resulted in a rapid pressure 

drop. However, this pump could not 

be run continuously in this test 

scenario.  A cryogenic pump 

operates by freezing (condensing) 

gas onto a 20K cold surface.  When 

this surface becomes saturated, the 

pump warms and is no longer 

effective. Because the simulant is 

continuously off gassing (as opposed 

to an empty chamber with a finite 

volume of gas) the cyrogenic pump became saturated within 3 hours, resulting in reduced performance.  In order to 

„regenerate‟, or clean off the cold surface, the pump must warm to room temperature.  A nitrogen purge is then used 

to remove the condensate.  Multiple purges are necessary if the pump has been saturated.  Once regenerated, it then 

takes 4 hours to reach the 20 K operating temperature. This long regeneration time is the reason that the cryogenic 

pump was not used on day 10.  In future test series, ways of expediting the regeneration will be explored.   

 
Figure 2: Time dependant pressure traces for all 

three tests. 

 
Table 1: Pumping conditions for each test. 

 

Test 

Simulant 

type 

Pump Changes from previous test 

1 GRC-3 Roughing pumps only - 

2 GRC-3 Venturi pump (day 1 

only), roughing pumps 

Improved dust protection 

for the roughing pump 

3 LHT-3M Venturi pump (day 1 

only), roughing 

pumps, Cryo pump 

(days 9,11) 

Switched to LHT-3M 

simulant.  Overnight 

operation of roughing 

pump. 
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B. Simulant Disruptions 

 Simulant disruptions can occur as gases, trapped within the simulant bed, release in a low pressure environment
3
. 

This includes gases trapped within the particle pore structure, as well volatile species (such as water) adsorbed to the 

particle surfaces.  Several types of simulant disturbances were observed in this test series and are represented in 

Fig.3.  Figure 3A was taken during test 2 and shows two of these disturbance types.  The localized boiling shown in 

the foreground is characterized by small, isolated craters where the simulant appears to bubble. These are localized, 

small scale disturbances with little perceivable airborne dust generation.  In contrast to this is the wave eruption in 

the image back ground.  A wave eruption starts as a simulant spout (geyser) and quickly grows and propagates like a 

wave over the surface.  A significant amount of airborne dust is generated. A crawling wave (not shown) is similar 

to this, but on a smaller scale and without noticeable dust generation. In these disturbances it appears as though a 

creature is moving just beneath the surface.  A surface boil is shown in Figure 3B. This event from test 1 shows 

small scale disturbances over the entire surface. While a localized boil was fixed in location, these disturbances 

unpredictably moved over the entire surface.  In this case, the surface boil evolved into a wave eruption on the right 

side of the image.  Figure 3C, from test 3, shows a post test image of a simulant spout. Spouts were observed in most 

tests and were always isolated to the corners of the bin.  They remained fixed in location and could persist for 

several minutes. This was the only simulant disturbance that occurred in test 3. 

 
 Simulant disturbances were most prevalent when the pressure differential across the simulant bed was high; in 

other words, when the pump rate was large.  This is illustrated in Fig.4, which shows the pressure log for a portion 

of test 1. The pump rates displayed on the graph are approximated using a linear curve fit in the shaded regions.  The 

two roughing pumps were initially activated concurrently, resulting in a fast pressure decline and a wave eruption 

simulant disturbance. As soon as the disturbance was observed, the primary rough pump was closed off, leaving the 

small, mobile pump acting alone. The pump rate slowed considerably, and the simulant stagnated.  The primary 

pump was then reactivated using a nitrogen 

bleed to slow the pump rate on the chamber.  

This resulted in a lesser simulant disturbance 

(localized boiling).  As the pump rate naturally 

decayed, the simulant calmed.  

 The simulant disturbance events for each 

test, along with the representative pump rates, 

are shown in Table 2 and graphically in Fig. 5. 

It should be noted that the actual pressure 

decay followed a more complex profile, more 

closely resembling an exponential. These linear 

rates are only intended as a rough 

quantification.  There is not adequate data to 

determine if a rate/pressure threshold exists for 

simulant disturbances.  Since the simulant 

strength profile would vary from test to test, 

this may also affect the number and nature of 

the disturbances.  Nevertheless, regulating the 

pump rate does seem to mitigate simulant 

disturbance.  Simulant disturbances were not observed under 2.5 Torr in any test. This includes cryogenic pump 

activation in test 3 which reduced the pressure from 0.15 Torr to 5x10
-4 

Torr within 30 s. No matter what pumping 

 
Figure 3: Photos from the video showing the different types of simulant disturbances. 

 

 
Figure 4: The pressure log from a portion of test 1. The periods 

where simulant disturbances were observed are shown, along with 

pressure decay (pump down) rates based on linear curve fits of the 

data. 
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rate was used, there was some degree of disturbance in the 2.5 to 10 Torr range. This is a regime where the mean 

free path of gas molecules is similar to or somewhat larger than the size of voids in the simulant. 

 

 

C. Cone Penetrometer 

 Cone penetrometry is perhaps the best diagnostic in use today to characterize in-situ soil strength
4
. NASA Glenn 

has developed unique computer codes which fit tip resistance versus depth data to determine simulant properties like 

cohesion, internal friction angle, bulk density, and bulk shear modulus in individual layers. This was based on work 

done by the Army Corps' Waterways Experiment Station
5
. This code was used on data from single cone penetrations 

in each of the three tests here. 

   Cohesion, adhesion, internal friction, wall friction, and bulk density are common parameters used in classical soil 

mechanics equations that predict excavation and traction forces on machines
6
. CP then becomes an enabler of the 

realistic environment testing of geotechnical systems by NASA. 

 The CP data seen in Figure 6 is qualitatively 

informative. The GRC-3 bin, used in test 1 and 2, was 

filled differently than the LHT-3M bin. GRC-3 was rapidly 

pluviated from a single 1 ton simulant bag into the bin. 

LHT-3M was filled by dumping many 5 gallon pails of 

material sequentially, with a more gentle pluviation than 

GRC-3. There was no tamping or consolidation done 

before placing either bin into the vacuum chamber. The 

GRC-3 traces are smoother than the LHT-3M, consistent 

with the more inhomogeneous filling done for LHT-3M. 

There was 2 months of settling of GRC-3 within the bin 

between tests one and two. Test 2 peaked at about 14 

percent greater tip resistance than test 1 due to these time 

consolidation effects. LHT-3M shows about 3 times more 

peak strength than GRC-3. This correlates with the lack of 

large scale simulant disturbances, and thus less weakening, 

of LHT-3M simulant. The LHT-3M peak tip resistance here is more than an order of magnitude smaller than has 

been seen in compacted lunar simulants at ambient pressure. Since the CP location was fixed, a pre-vacuum CP 

measurement of the un-compacted soil would have disturbed the simulant state for the vacuum measurement.  These 

measurements are left for the next test series which will include a 2D translation system. CP measurements can then 

be made before and during vacuum conditions with no other consolidation actions to cause a change in simulant 

strength.  The 2D translation will also provide tamper compaction capability; such that a more consolidated simulant 

state will be possible in the next test. 

 Figure 7 shows an example of the data fitting analysis using test 2 data. The blue hash marks on the x-axis 

represent layer dividers that were hypothesized based on curvature changes. Notice the shallow layer and the deep 

layer are concave upward and downward respectively. That often leads to reversals in the role of cohesion and 

Table 2: Simulant disruption events for each test with the 

corresponding pump rate and pressure range of the event. 

 Event Slope, 

Torr/min 

Pressure range, 

Torr 

Test 1 Spout 307 754-378 

Surface boil   

Wave Eruption 

-3.8 8.53-7.26 

Localized Boil  -0.7 6.55-5.19 

Test 2 Localized spout -53 293-64.5 

Localized boil -3.6 25.5-15.2 

Wave Eruption -1.4 7.32-6.33 

Crawling Waves -0.2 

-0.1 

-0.04 

6.89-4.91 

4.93-4.41 

3.31-2.64 

Test 3 Spout -7.0 50.9–15.6 

 Spout -0.7 13.4-7.66 

 

 
Figure 5:  Approximate pressure decay rates are 

shown for each simulant disturbance. Rates are 

plotted against the pressure in which the 

disturbance was first observed, and error bar show 

the end pressure. 

 

 
Figure 6: The cone penetrometer results for each test.   

 



 

 

American Institute of Aeronautics and Astronautics 
 

 

6 

friction angle as it affects strength, as seen in this example. Bulk density is low but equal for the layers. The bulk 

shear modulus is notably different with the lower layer being smaller. A piezocone could be used to obtain an 

independent measure of the shear modulus to check validity of what is seen here.  

It is premature to draw conclusions about the effects of vacuum on simulant strength as it would affect 

excavation, traction, or material handling system design. Author Wilkinson is drafting a substantial review of CP 

data analysis tools based on Rohani & Baladi cavity expansion-based theory and Durgunoglu & Mitchell bearing 

capacity-based theory
7
. It is beyond the scope of this paper to develop a deeper discussion of the engineering 

parameter fitting presented here. It is sufficient to conclude that the parameters seen here are plausible for LHT-3M 

when compared to benchtop geotechnical test results at ambient conditions for bulk density, cohesion, and friction 

angle. 
 

D. Volatiles 

 The constituents of the simulant off gassing were measured using a residual gas analyzer.   Because its maximum 

operating pressure was 10
-4 

Torr, the RGA could only be used during days 9 and 11 of test 3.  The results in Fig. 8 

are the average partial pressures over the two detection periods (4hr for day 9, 2hr for day 11). These results are in 

line with previous, small scale tests with JSC-1a simulant
3,8

. The primary constituent for both days is water (mass 

#18) with decomposition peaks for OH and O on either side. Lesser peaks include hydrogen and carbon dioxide, as 

well as nitrogen from the residual air. 

 The large water peak may contribute to the long pump down times.  While water would likely release readily 

from the surface simulant, the depth gradient would be considerable.  This is compounded by the small pore size of 

the simulant itself, which could continually trap and re-release the volatiles. Especially in the first two tests, with 

GRC-3 simulant, this water release from the simulant was evident.  An analysis of the roughing pump oil following 

test 1 indicated an elevated water content.  While the pretest condition of the oil is not known, the amount of water 

 

 
Figure 7: CP data fit to extract cohesion (C), friction angle (PHI), bulk density(density), and bulk shear modulus (G) from 

the several layers of GRC-3. 
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in the cold traps was also higher than anticipated. Over the course of test 2 more than 1300 ml was removed from 

the cold traps. However, the cold trap was exposed to humid room air during periods of pump cycling.  GRC-3 

simulant is about 0.07 percent water, by weight (unpublished tests at GRC as per ASTM D2216).  The total water 

content of the simulant was therefore estimated to be about 660ml of water, using this measurement along with three 

monolayers of water for each particle (which would not be included in the ASTM measurement).  (The water 

monolayers were calculated using the measured particle size distribution
9
 and assuming spherical, cubic packed 

particles).  A high water constituent does present some logistic issues for test operation. The slow volatilization of 

water results in longer pump down times. The water also presents a concern to operation of both the roughing pump 

(oil contamination) and the cryogenic pump (saturation of the cold surface).  Mitigation techniques could include 

soil tilling to expedite volatilization and a water insensitive pump system, such as a turbo pump. 

 

IV. Conclusion 

A set of tests were performed to explore pressure effects on lunar simulant. Previous, smaller scale simulant tests 

indicated that off gassing of the soil during vacuum pump down caused disruptions to the preconditioned simulant 

state. Prior methods for mitigating this, such as pre-drying the simulant, are not feasible for the larger scale bins that 

would be required for ISRU hardware testing.  The goal of this initial test series was to identify the conditions that 

cause simulant disturbances, explore options for mitigating these disturbances, and examine logistics for these larger 

scale tests. As such, a vacuum chamber facility at the NASA Glenn Research Center was modified to accommodate 

a ~1 m
2
 by 0.6 m deep simulant bed. This is largest simulant bed tested in a vacuum thus far.   

Off gassing of the simulant resulted in simulant disruptions in all three tests during the roughing pump period 

(760 to ~2 Torr).  The frequency and intensity of these were affected by the pump rate.  Localized disruptions at 

slower pump rates may be more manageable in a system configuration, whereas the larger disruptions at rapid pump 

rates would harm simulant integrity.  Disruptions were more prevalent in the GRC-3 simulant, whereas LHT-3M 

only had a highly localized disturbance. This may be attributed the higher water content of the GRC-3.  No soil 

disruptions were observed below 2.5 Torr for any simulant, regardless of the pump rate. 

Slow off-gassing of the simulant, particularly in the 1Torr range, resulted in log pump down times.  This can be 

attributed to the permeation of the volatiles through the soil depth and small pore size of the simulant particles. 

Since the primary volatile species was water, as indicated by the RGA data, re-absorption onto surface particles may 

also contribute. The slowest portion of the pump down was in the range between 1 Torr and 0.1 Torr.  The 

performance of the roughing pumps falls off significantly below 1 Torr. Yet, only the cryogenic pump had the 

capability to reach the target pressure (<10
-4 

Torr), and its maximum operating pressure is 0.1Torr. It took a full 

week of continuous, active pumping to achieve cryogenic pump activation.  

Several facility and procedure improvements will be implemented in the second phase of this test program to 

expedite pump down. The first is a turbopump which will be used in the <0.75 Torr regime to improve pump rate. 

Turbopumps are highly sensitive to dust contamination, so they were initially disregarded.  But, since simulant 

 
Figure 8: Results from the residual gas analyzer for test 3. 
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disruptions were not observed below 2.5 Torr, dust contamination at this level should be minimal. Baffles will be 

also added to the pump inlet as a precaution.  Additionally, the turbopump should be able to reach at least the 10
-4 

Torr range. So the use of the cryogenic pump can be delayed, decreasing the likelihood of saturating the cold 

surface. Another improvement is the expansion of the roughing pump line diameter, which will increase the 

throughput.  The addition of a tilling device is planned for later in the phase 2 program.  An auger will be used to 

improve the gas release from the soil depth. 
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